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Maillet Type Theorem for Nonlinear Goursat

Problems
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I Abstract

Let (t,z) € C2. The following equation is called the nonlinear Goursat problems.

oKL u(t, x) = a(x)tho + fr, 41 (tmc, {afaﬁu(t, x)}A) ,
(E) u(t, x) = O(tForH),
u(t, ) — p(t,x) = O(tFo+Kal),

where ¢(z) = O(t%0+X) is holomorphic in a neighborhood of the origin. The other
definitions of notations will be stated later. For linear Goursat problems, Miyake
[2], Miyake and Hashimoto [3] studied the solvability of solutions on the Gevrey
spaces.

The purpose of this paper is to give the Maillet type theorem for nonlinear
Goursat problems.
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I 1. Main Theorem

Let (t,x) € C2. We consider the following Goursat problem for nonlinear partial
differential equation.

DR Lu(t,2) = ()15 + ey (b, {Bb0ku(t,2)},)
(E) u(t, z) = O(t"o+K),
u(t,z) — o(t,z) = O(tFotEgl).

Here ¢(t,z) denotes an arbitrary holomorphic function whose vanishing order in ¢
is Ko + K where Ky = max{0,K; — K} + 1(> 1). We assume that K and L are
nonnegative integers, and we put

(1.1) A={(k);0<k<K,0<0< Ly},

where K; and L; are nonnegative integers. Moreover we assume that a(z) is
holomorphic in a neighborhood of the origin and fx,+1(¢,2,&) (& = {&keta =
{&ke}(k,0)en) is also holomorphic in a neighborhood of the origin with Taylor ex-
pansion
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fKo+1(t7x7§) = Z fpa(.ﬁ)tpr;:;[’
A

V(p,a)>Ko+1

where
(1.2) V(p,a)=p+ > (Ko+ K — k)ag,
A
Kl L1 Kl L1
and [[=][[Jand d_=>"3".
A k=04¢=0 A k=0 ¢=0

Then the following theorem holds.

Theorem 1 The formal solution of the equation (E) exists uniquely, and it belongs
to the Gevrey class of order at most s + 1, where

B M(p,a) — (K + L)
(1.3) srgix{ Vip.a) — Ko ,0},
and
(1.4) M (p, a) = max{k + ¢; aps # 0, fpa(z) # 0}.

This means that the power series Y ;s e, g wi(2)t/il* converges in a neighborhood
of the origin for the formal solution u(t,x) = 3", .\ g wi(x)t".

I 2. Newton Polygons
For the point (a,b) € R?, we define the region A, ;) by
Ay ={(X,Y); X <a,Y >b} CR%.

Let u(t,z) = O(tKo+K). For the left hand side 9f0Lu(t,z) of (E) and each

term
foa(@)t? T (0F bult, x)) ™"
A

of Taylor expansion of f,1(t, 2, {0F0%u(t,z)}a), we define the points in R? by

Ofolu(t,x) < (K+L,Ko), fea(@)t* ] (9F0Lu(t,z))™ « (M(p,a),V(p,q)).
A

Then the Newton polygon AN (E) is defined as follows.

N(E) = Ch (A(K+L,Ko> U (Up,a)‘(M(pﬂ),V(p,a)))) ,

where Ch(---) denotes the convex hull of {---} in R2.
The following theorem holds.

Theorem 2 Let o be the least positive slope of Newton polygon N(E). Then the
Gevrey order s + 1 of the formal solution of (E) is given by s =1/0.

The proof of Theorem 2 is obtained by Theorem 1, immediately.
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I 3. Proof of Theorem 1
We put u(t,z) = ¢(t,z) + v(t,z) (v(t,z) = O(tFo+EzL)). By substituting this

into the equation (E), we see that v(t, x) satisfies the following equation.
65851}(15, I) = _QDKL(t,CU) + a(‘T)tKO
(El) +fKo+1 (t,l’, {QDM(tvx) +8§8§v(t,x)}A) )
v(t,z) = O(tFot Kl
where
pu(t, @) = 09y 0(t, ).

We know that all pge(¢, x) are holomorphic in a neighborhood of the origin. Espe-
cially, ore(t, x) = O(tKo+E=F) for all k and /.

We put @re(t, @) = Ppe(z)tXo = Gy (t, :Jc) where @Gp(t, x) = O(tKotE-k+1)
i(r) = a(z) — e (t,2) and Frgsr (62 {000u}a) = ficyen (1,2, {0800} a)
Prr(t,z) = O(tFot1). Then the equation is reduced to the following.

oK oLy(t, x) = a(x)tfo + fK0+1 (t, x, {gokg(t, x) + OFdtu(t, :U)}A) .
Here fK0+1 is rewritten as follows.
fNKoJrl (t7 xZ, {Q@k[(t, 1‘) + afaﬁv}A)

. ol
= fror1 (2, {OF L0} ) + D im( A0Fotv} ) (enelt, )™

al  0g
le|>1
= fKo+1 (t,:zc7 {8faﬁv}A)

1 olely, a
Y RO (10 (oot} ) (o)

la|>1 o

191 freyia ko Ko+ K —k ke
P Y et (b {0k} ) {r(t)™ — (o)t )™}
le|>1

= fKo+1 (t,m, {858£U}A) + f1 (t,x, {856£U}A) + fo (t,x, {@kaﬁv}A) .

We can easily see that the vanishing orders of f; and f; are Kyo+1 and Kg+2, respec-
tively. Therefore, we can put the rightmost side of above by gr,+1(t, z, {0F9Lv}a),
where

oo (b 0RO} ) = D0 gpale)? T (OF0L0)™

V(p.a)>Kot1 A

Vip,a)=p= Z(Ko + K —k)age (same form as (1.2)).
A
We remark that the vanishing order V(p,«) of each term of f; is the same
representation as the original V(p, «), but (p, «) is different from the original (p, «).
However, the Gevrey order is not change.
In this case, (E;) is rewritten as follows.

B OEOLv(t, 2) = a(x)tre + g4 (t,x, {Gfaﬁv(t, x)}A) ,
(1) v(t,z) = O(tFotKpl),
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We put V(¢,z) = 0F0Lv(t,z) as a new unknown function. This implies that
v(t,x) = 07 X9 LV (¢, ). Then (E}) is reduced to the following.

V(t,r) = a(x)tho + gr 41 (¢, 2, Gf_Kaﬁ’LV(t,x) ,
(E2) {V(t,x):O(tKO). o }a)

We consider the following equation.

AtHo
(Es) W(t,x) = (R — z)KotK+L+1

+ Grorr (ta, {0F KW Y

with W (t, ) = O(tK), where a(z) < A/(R — x)Ko+K+L+1 and

Gpa
Grot1 (t,7,8) = Z = )p+K0‘a|+K+L+1t Hﬁ;@” > grot1 (62, 6)
V(p,a)>Ko+1

By the construction of (E3), we obtain V(¢,z) < W (t,z).
For (E3), the following proposition holds.

Proposition 1 The equation (E3) has a unique formal solution, and it belongs to
the Gevrey class of order at most s + 1. Here the constant s is same as (1.3).

If we admit Proposition 1, then the proof of Theorem 1 is obtained immediately.
Thus, the proof of Theorem 1 is completed. a
I 4. Proof of Proposition 1

We put W(t,z) = 3,5 i, Wi(2)t', and substituting this into (E3), we have

; AtFo
Z Wz(x)tz = —
i>Ko (R — z)Kot+K+L+
GpﬁwéC »
" Z (R—£E)T’+K0(|5|+\7\+|5|+\C\)+K+L+1t
V(p,B,7,6,{)>Ko+1
Bre
H Z 8_(L_€)W( ) pt+K—k
. @ i) g
Ay \i>Ko qul (i +q)
k—K Ve
X H Z 0, LmOWi(x) ( H (i+1— q)) K=k
Ay \i>Ko =1
Bre
(s oo
x T i) —)—F
Az \i>Ko Hq 1 (Z + )
k—K Cke
x H Z o Wi(x) ( H (i+1-— q)) K=k ’
Ay

i> Ko qg=1

N Ay ={(k,0);k<K (<L}, Ay={(k0);k>K(<L}
WRCTCV Ay = {(k, 0k < K, 0>LY, Ay={(k0);k>K(>L},"
A:AIUAQUABUA47
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A1 A2
+Z(Ko + K —k)ope + Z(K@ + K — k)Cre-
As Ay

This is equivalent to
V(p,a)=p+ Y (Ko+ K — k)ae.
A

We obtain the following recurrence formula. For i = K,

A
(R _ I)K()+K+L+1 ’

WK()(z) =
and for 1 > Ky + 1,

GPB%C
Wiz) = Z (R— x)p+Ko(\6|+|v\+\5I+ICI)+K+L+1
V(p,B,7,6,{)>Ko+1

Bre a_ Yee k—K
XZ{HH Zk“ HH H ]klr“’l_Q) 8€ LWJK”V‘( )

) o=l (lkfr+q Ay =1 g=1

Oke 85_ Cre k—K

HH¢HH 1 e +1-10) aﬁ—LWw(m},

Ay o1 L=t (Ther + @) AL 7251 51

where 3~ is taken over

Bre Bre
pAY D liker + K =k)+ Y > (jner + K — k)
A r=1 Ay r—1
Okt Cre
+ZZ(TM’+K_]“) "‘ZZ(fiker—i-K—k) =i.
Az r=1 Ay r=1

Of course, this is also equivalent to

Qke

P+ ik + K — k) =i.

A r=1
Lemma 1 For i > Ky, the coefficent W;(z) is written by

Mi—(M—1)Ko
Wi s

(4.5) Wi(z) = Z (R = 2) T KTLiT"
J=i

where M = (K + L+ 2Ky)(Ko+ 1)+ 1(> K+ L+ 2Ky + 1) and W;; > 0.

By Lemma 1, we have the following majorant relations.
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Lemma 2 (i) The case that (k,0) € Aq,

K—k
857K8£_LW(L .Z‘) < WW(L :l?)
(ii) The case that (k,£) € As,
OF KW (t,x)
(K~
] <K+L
| mge e (if k+0<K+1I),
ek ktl—K—L ,
(iii) The case that (k,0) € As,

KL Ww (¢, )

T\ K—k
%W(twﬂ (ifk+(<K+1L),

<§ T
W(Mtat + L1)k+Z_K_LW(t,x) (if k+¢> K+ L),

where M = M+ L.
(iv) The case that (k,£) € Ay,

tK_k

w (Mtat + Ll)k+£_K_LW(t, fl')

KL W (t,2) < G

We accept Lemma 1 and 2, and continue the proof of Proposition 1.
We consider the following equation.

AtFo
Y(t,x) = (R — z)KotE+L+1
‘G - { thK—ky } { th=F LY }
K b b T N/_T, b T N/_T, b
(Eq) o (R— )~ Ay (R—z)t-L Ao

(Mt)K7k£2Y tK7k£1Y
R=aF [ \R=oFEf, )

Y (t,z) = O(t¥o).

where

_K— 1 (k+¢<K+1L)
— k+¢{—K—L _ )
L= (Mtat-i-Ll) and Lo —{ Ly (k+f> K+L).

The equation (E4) is a singular ordinary differential equation in ¢ with parameter
z, and we know that the Gevrey order of formal solution is given by s + 1, where

(452

S = max
p,o

This result is, for example, found in [1] or [4].
Thus, we obtain Proposition 1. m]
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I 5. Proof of Lemma 1

In order to prove Lemma 1, it is sufficient to estimate the lower and the upper
bound estimates of the power J of 1/(R — x) by induction.
First, the lower bound estimate is given as follows.

(63774
J > pt+Kola|+K+L+1+> > (g +K+L+1)
A r=1
[63°Y4

= p+K+L+14+> > (irer+K+L+Ko+1)

A r=1
[e%%) Qe
= (p+ZZ(mT+Kk)>+K+L+1+ZZ(KO+L+1+k)
A r=1 A r=1

[e9°7)
= i+K+L+14+> > (Ko+L+1+k)
A r=1
> 1+ K+ L+1.
Next, the upper bound estimate is given as follows.

(8224

J < p+Kola|+ K+L+1+Y Y (Migy — (M- 1)Ko+ K+ L+1)

A r=1
= (p‘f‘Zi (iker + K — k) (p—l—ZiKo—i-K k))
A r=1 A r=1

Akl QAke

AN h-FK)+) Y (K+L+ Ko+ 1)+ K+L+1

A r=1 A r=1

< Mi— (M —1)V(p,a)+ (Ko — Dlal+ (K + L+ Ko+ Dla| + K + L +1
= Mi—(M—-1)V(p,a)+ (K+L+2Ky)|a|+K+L+1

< Mi— (M —1)V(p,a)+ (K + L+2Ko)V(p,a) + K+ L+1

= Mi—(M-K—-L-2Ky—1)V(p,a)+K+L+1

< Mi—-(M-K-L—-2Ky—1)(Ko+1)+K+L+1

= Mi—-(M-1)Ko—{M—(K+L+2Ky)(Ko+1)—1}+K+L+1

= Mi—(M~-1)Ky+K+L+1.

Thus, we obtain Lemma 1. O

I 6. Proof of Lemma 2
In the case (i), k < K and ¢ < L hold. Then we have
of oW (t, )

Mi—(M—-1)Ky W,
k—K al—L iJ i
S YD VR
1> Ko
Mi—(M—-1)Ko 01W

i i+K—k
t e Wt
z;;o Z (R — z)/ +K+L+1+(t=1) . (R —x)—L (t,x),
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because

Ch = — — <1
L5 G+ I, (J+ K+ L+q)

Hence, we obtain Lemma 2 (i).
In the case (ii), k > K and ¢ < L hold. Then we have

K =LW (¢, )
Mi—(M—1)Ko W
k—K 50—L iJ i
=0 "0, Z Z (R — x)J+K+L+1t
1> Ko
Mi—(M-1)Ko H -

Ki+K—k+q) W;
-2 X :

e [0 (T + K+ Lot q) (B —a) TR en)

Mi—(M~1)Ko K

ti+K—k

Wiy it Kk
<3 Y Rt
i>Ko

kl—K— : i
Here, we put £1 = (Mtd; + L1)*t*~K~L_ Since e S e < 1<, the
majorant relation

kK 1 (if k+¢(<K+1L),
(J+ K+ L+1)L-t { (t0,)Ft-K-L (if k+¢> K+ L)
{1 (if k+¢<K+1L),

Ly (if k+¢>K+1L)
= L9

holds in the sense of operator for ¢!. This is Lemma 2 (ii).
In the case (iil), £ < K and ¢ > L hold. Then we have

OF B EW (t,x)
Mi—(M—-1)Kg

W, )
k—K of—L i i
=0 "0, Z Z (R — $)J+K+L+1t

> Ko

Mi— (M 1)K0 Hq;l (J+L+q) WIJ

Z Z HKZIC (Z + q) (R _ x).]+K+L+1+(Z—L)
q=

i> Ko
Mi—(M—1)K,

ti+K7k

(J+ 0L Wiy it K—k
t
< ,;;U Z (i + 1)Kk (R — g)J+K+L+1+(¢-L)

Here, by inequalities

J4l _ Mi—(M-1)Ko+L _
it1 - i1

<M+L; =M and J+L< Mi+ Ly,
the majorant relation

J+0F 1 (if k+¢<K+L),  cx-
( ) < MKk { (if k+{<K+1L) — NIK—kp,

(i+ 1)Kk Ly (if k+0>K+1L)

holds in the sense of operator for ¢*. This is Lemma 2 (iii).
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In the case (iv), k¥ > K and ¢ > L hold. Then we have

oFFo Wit @)
Mi—(M—1)K, W
A VD> T
© — \JFK+L+1
i>Ko J=i (R~ )
Mi—(M—1)K,

_ Z Z CoWiy i+ K~k
i>Ko J=i (R — )+ KAL)
. Z Mi—(M-1)Ko PR KT+ 0 W fitK—k
i>Ko J=i (R — o) /KL (L)
because
k—K L
Co=[[G+K-k+9 [[(J+L+q <t F(T+0E
q=1 =1

Here, since i < Mi < Mi+ L, and J 4+ ¢ < Mi+ Ly, the majorant relation
PRI+ 0 < (M9, + L)) KL = £y

holds in the sense of operator for #*. This is Lemma 2 (iv). O
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