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Abstract

Let (t, x) ∈ C
2. The following equation is called the nonlinear Goursat problems.⎧⎨

⎩
∂K
t ∂L

x u(t, x) = a(x)tK0 + fK0+1

(
t, x,

{
∂k
t ∂

�
xu(t, x)

}
Δ

)
,

u(t, x) = O(tK0+K),
u(t, x)− ϕ(t, x) = O(tK0+KxL),

(E)

where ϕ(x) = O(tK0+K) is holomorphic in a neighborhood of the origin. The other
definitions of notations will be stated later. For linear Goursat problems, Miyake
[2], Miyake and Hashimoto [3] studied the solvability of solutions on the Gevrey
spaces.

The purpose of this paper is to give the Maillet type theorem for nonlinear
Goursat problems.

Keywords. Partial differential equations, Goursat problems, Maillet type theorem

1. Main Theorem

Let (t, x) ∈ C
2. We consider the following Goursat problem for nonlinear partial

differential equation.⎧⎨
⎩

∂K
t ∂L

x u(t, x) = a(x)tK0 + fK0+1

(
t, x,

{
∂k
t ∂

�
xu(t, x)

}
Δ

)
,

u(t, x) = O(tK0+K),
u(t, x)− ϕ(t, x) = O(tK0+KxL).

(E)

Here ϕ(t, x) denotes an arbitrary holomorphic function whose vanishing order in t
is K0 + K where K0 = max{0,K1 −K} + 1(≥ 1). We assume that K and L are
nonnegative integers, and we put

Δ = {(k, �); 0 ≤ k ≤ K1, 0 ≤ � ≤ L1},(1.1)

where K1 and L1 are nonnegative integers. Moreover we assume that a(x) is
holomorphic in a neighborhood of the origin and fK0+1(t, x, ξ) (ξ = {ξk�}Δ =
{ξk�}(k,�)∈Δ) is also holomorphic in a neighborhood of the origin with Taylor ex-
pansion
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fK0+1(t, x, ξ) =
∑

V (p,α)≥K0+1

fpα(x)t
p
∏
Δ

ξαk�

k� ,

where

V (p, α) = p+
∑
Δ

(K0 +K − k)αk�,(1.2)

and
∏
Δ

=

K1∏
k=0

L1∏
�=0

and
∑
Δ

=

K1∑
k=0

L1∑
�=0

.

Then the following theorem holds.

Theorem 1 The formal solution of the equation (E) exists uniquely, and it belongs
to the Gevrey class of order at most s+ 1, where

s = max
p,α

{
M(p, α)− (K + L)

V (p, α)−K0
, 0

}
,(1.3)

and

M(p, α) = max{k + �;αk� �= 0, fpα(x) �≡ 0}.(1.4)

This means that the power series
∑

i≥K0+K ui(x)t
i/i!s converges in a neighborhood

of the origin for the formal solution u(t, x) =
∑

i≥K0+K ui(x)t
i.

2. Newton Polygons

For the point (a, b) ∈ R
2, we define the region Λ(a,b) by

Λ(a,b) = {(X,Y );X ≤ a, Y ≥ b} ⊂ R
2.

Let u(t, x) = O(tK0+K). For the left hand side ∂K
t ∂L

x u(t, x) of (E) and each
term

fpα(x)t
p
∏
Δ

(
∂k
t ∂

�
xu(t, x)

)αk�

of Taylor expansion of fK0+1(t, x, {∂k
t ∂

�
xu(t, x)}Δ), we define the points in R

2 by

∂k
t ∂

�
xu(t, x) ↔ (K+L,K0), fpα(x)t

p
∏
Δ

(
∂k
t ∂

�
xu(t, x)

)αk� ↔ (M(p, α), V (p, α)) .

Then the Newton polygon N (E) is defined as follows.

N (E) = Ch
(
Λ(K+L,K0)

⋃(⋃
p,α

λ(M(p,α),V (p,α))

))
,

where Ch(· · · ) denotes the convex hull of {· · · } in R
2.

The following theorem holds.

Theorem 2 Let σ be the least positive slope of Newton polygon N (E). Then the
Gevrey order s+ 1 of the formal solution of (E) is given by s = 1/σ.

The proof of Theorem 2 is obtained by Theorem 1, immediately.
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3. Proof of Theorem 1

We put u(t, x) = ϕ(t, x) + v(t, x) (v(t, x) = O(tK0+KxL)). By substituting this
into the equation (E), we see that v(t, x) satisfies the following equation.⎧⎪⎨

⎪⎩
∂K
t ∂L

x v(t, x) = −ϕKL(t, x) + a(x)tK0

+fK0+1

(
t, x, {ϕk�(t, x) + ∂k

t ∂
�
xv(t, x)}Δ

)
,

v(t, x) = O(tK0+KxL),

(E1)

where
ϕkl(t, x) := ∂k

t ∂
�
xϕ(t, x).

We know that all ϕk�(t, x) are holomorphic in a neighborhood of the origin. Espe-
cially, ϕk�(t, x) = O(tK0+K−k) for all k and �.

We put ϕk�(t, x) = ψk�(x)t
K0+K−k+ϕ̃k�(t, x), where ϕ̃k�(t, x) = O(tK0+K−k+1),

ã(x) = a(x) − ψKL(t, x) and f̃K0+1(t, x, {∂k
t ∂

�
xu}Δ) = fK0+1(t, x, {∂k

t ∂
�
xu}Δ) −

ϕ̃KL(t, x) = O(tK0+1). Then the equation is reduced to the following.

∂K
t ∂L

x v(t, x) = ã(x)tK0 + f̃K0+1

(
t, x,

{
ϕk�(t, x) + ∂k

t ∂
�
xv(t, x)

}
Δ

)
.

Here f̃K0+1 is rewritten as follows.

f̃K0+1

(
t, x,

{
ϕk�(t, x) + ∂k

t ∂
�
xv

}
Δ

)
= f̃K0+1

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
+

∑
|α|≥1

1

α!

∂|α|f̃K0+1

∂ξα
(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
(ϕk�(t, x))

αk�

= f̃K0+1

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
+

∑
|α|≥1

1

α!

∂|α|f̃K0+1

∂ξα
(
t, x,

{
∂k
t ∂

�
xv

}
Δ

) (
ψk�(x)t

K0+K−k
)αk�

+
∑
|α|≥1

1

α!

∂|α|f̃K0+1

∂ξα
(
t, x,

{
∂k
t ∂

�
xv

}
Δ

){
ϕk�(t, x)

αk� − (
ψk�(x)t

K0+K−k
)αk�

}

=: f̃K0+1

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
+ f1

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
+ f2

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
.

We can easily see that the vanishing orders of f1 and f2 areK0+1 andK0+2, respec-
tively. Therefore, we can put the rightmost side of above by gK0+1(t, x, {∂k

t ∂
�
xv}Δ),

where

gK0+1

(
t, x,

{
∂k
t ∂

�
xv

}
Δ

)
=

∑
V (p,α)≥K0+1

gpα(x)t
p
∏
Δ

(
∂k
t ∂

�
xv

)αk�
,

V (p, α) = p =
∑
Δ

(K0 +K − k)αk� (same form as (1.2)).

We remark that the vanishing order V (p, α) of each term of f1 is the same
representation as the original V (p, α), but (p, α) is different from the original (p, α).
However, the Gevrey order is not change.

In this case, (E1) is rewritten as follows.{
∂K
t ∂L

x v(t, x) = ã(x)tK0 + gK0+1

(
t, x,

{
∂k
t ∂

�
xv(t, x)

}
Δ

)
,

v(t, x) = O(tK0+KxL).
(E′

1)
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We put V (t, x) = ∂K
t ∂L

x v(t, x) as a new unknown function. This implies that
v(t, x) = ∂−K

t ∂−L
x V (t, x). Then (E′

1) is reduced to the following.{
V (t, x) = ã(x)tK0 + gK0+1

(
t, x,

{
∂k−K
t ∂�−L

x V (t, x)
}
Δ

)
,

V (t, x) = O(tK0).
(E2)

We consider the following equation.

W (t, x) =
AtK0

(R− x)K0+K+L+1
+GK0+1

(
t, x,

{
∂k−K
t ∂�−L

x W
}
Δ

)
(E3)

with W (t, x) = O(tK0), where ã(x)	 A/(R− x)K0+K+L+1 and

GK0+1 (t, x, ξ) :=
∑

V (p,α)≥K0+1

Gpα

(R− x)p+K0|α|+K+L+1
tp

∏
Δ

ξαk�

k� 
 gK0+1 (t, x, ξ) .

By the construction of (E3), we obtain V (t, x)	W (t, x).
For (E3), the following proposition holds.

Proposition 1 The equation (E3) has a unique formal solution, and it belongs to
the Gevrey class of order at most s+ 1. Here the constant s is same as (1.3).

If we admit Proposition 1, then the proof of Theorem 1 is obtained immediately.
Thus, the proof of Theorem 1 is completed. �

4. Proof of Proposition 1

We put W (t, x) =
∑

i≥K0
Wi(x)t

i, and substituting this into (E3), we have

∑
i≥K0

Wi(x)t
i =

AtK0

(R− x)K0+K+L+1

+
∑

V (p,β,γ,δ,ζ)≥K0+1

Gpβγδζ

(R− x)p+K0(|β|+|γ|+|δ|+|ζ|)+K+L+1
tp

×
∏
Δ1

⎛
⎝ ∑

i≥K0

∂−(L−�)
x Wi(x)

ti+K−k∏K−k
q=1 (i+ q)

⎞
⎠

βk�

×
∏
Δ2

⎛
⎝ ∑

i≥K0

∂−(L−�)
x Wi(x)

(
k−K∏
q=1

(i+ 1− q)

)
ti+K−k

⎞
⎠

γk�

×
∏
Δ3

⎛
⎝ ∑

i≥K0

∂�−L
x Wi(x)

ti+K−k∏K−k
q=1 (i+ q)

⎞
⎠

βk�

×
∏
Δ4

⎛
⎝ ∑

i≥K0

∂�−L
x Wi(x)

(
k−K∏
q=1

(i+ 1− q)

)
ti+K−k

⎞
⎠

ζk�

,

where

{
Δ1 = {(k, �); k ≤ K, � ≤ L}, Δ2 = {(k, �); k > K, � ≤ L},
Δ3 = {(k, �); k ≤ K, � > L}, Δ4 = {(k, �); k > K, � > L}, , and

Δ = Δ1 ∪Δ2 ∪Δ3 ∪Δ4,

Sඁංඋൺං, Akira／Maillet Type Theorem for Nonlinear Goursat Problems
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V (p, β, γ, δ, ζ) = p+
∑
Δ1

(K0 +K − k)βk� +
∑
Δ2

(K0 +K − k)γk�

+
∑
Δ3

(K0 +K − k)δk� +
∑
Δ4

(K0 +K − k)ζk�.

This is equivalent to

V (p, α) = p+
∑
Δ

(K0 +K − k)αk�.

We obtain the following recurrence formula. For i = K0,

WK0
(x) =

A

(R− x)K0+K+L+1
,

and for i ≥ K0 + 1,

Wi(x) =
∑

V (p,β,γ,δ,ζ)≥K0+1

Gpβγδζ

(R− x)p+K0(|β|+|γ|+|δ|+|ζ|)+K+L+1

×
∑
(∗)

{∏
Δ1

βk�∏
r=1

∂�−L
x Wik�r

(x)∏K−k
q=1 (ik�r + q)

∏
Δ2

γk�∏
r=1

k−K∏
q=1

(jk�r + 1− q) · ∂�−L
x Wjk�r

(x)

×
∏
Δ3

δk�∏
r=1

∂�−L
x Wτk�r

(x)∏K−k
q=1 (τk�r + q)

∏
Δ4

ζk�∏
r=1

k−K∏
q=1

(κk�r + 1− q) · ∂�−L
x Wκk�r

(x)

}
,

where
∑

(∗) is taken over

p+
∑
Δ1

βk�∑
r=1

(ik�r +K − k) +
∑
Δ2

βk�∑
r=1

(jk�r +K − k)

+
∑
Δ3

δk�∑
r=1

(τk�r +K − k) +
∑
Δ4

ζk�∑
r=1

(κk�r +K − k) = i.

Of course, this is also equivalent to

p+
∑
Δ

αk�∑
r=1

(ik�r +K − k) = i.

Lemma 1 For i ≥ K0, the coefficent Wi(x) is written by

Wi(x) =

Mi−(M−1)K0∑
J=i

WiJ

(R− x)J+K+L+1
,(4.5)

where M = (K + L+ 2K0)(K0 + 1) + 1(≥ K + L+ 2K0 + 1) and WiJ ≥ 0.

By Lemma 1, we have the following majorant relations.

椙山女学園大学教育学部紀要　Vol. 12　2019年



6

Lemma 2 (i) The case that (k, �) ∈ Δ1,

∂k−K
t ∂�−L

x W (t, x)	 tK−k

(R− x)�−L
W (t, x).

(ii) The case that (k, �) ∈ Δ2,

∂k−K
t ∂�−L

x W (t, x)

	

⎧⎪⎪⎨
⎪⎪⎩

tK−k

(R− x)�−L
W (t, x) (if k + � ≤ K + L),

tK−k

(R− x)�−L
(Mt∂t + L1)

k+�−K−LW (t, x) (if k + � > K + L).

(iii) The case that (k, �) ∈ Δ3,

∂k−K
t ∂�−L

x W (t, x)

	

⎧⎪⎪⎨
⎪⎪⎩

(M̃t)K−k

(R− x)�−L
W (t, x) (if k + � ≤ K + L),

(M̃t)K−k

(R− x)�−L
(Mt∂t + L1)

k+�−K−LW (t, x) (if k + � > K + L),

where M̃ = M + L1.
(iv) The case that (k, �) ∈ Δ4,

∂k−K
t ∂�−L

x W (t, x)	 tK−k

(R− x)�−L
(Mt∂t + L1)

k+�−K−LW (t, x).

We accept Lemma 1 and 2, and continue the proof of Proposition 1.
We consider the following equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (t, x) =
AtK0

(R− x)K0+K+L+1

+GK0+1

(
t, x,

{
tK−kY

(R− x)�−L

}
Δ1

,

{
tK−kL2Y

(R− x)�−L

}
Δ2

,{
(M̃t)K−kL2Y

(R− x)�−L

}
Δ3

,

{
tK−kL1Y

(R− x)�−L

}
Δ4

)
,

Y (t, x) = O(tK0).

(E4)

where

L1 = (Mt∂t + L1)
k+�−K−L and L2 =

{
1 (k + � ≤ K + L),
L1 (k + � > K + L).

The equation (E4) is a singular ordinary differential equation in t with parameter
x, and we know that the Gevrey order of formal solution is given by s+ 1, where

s = max
p,α

{
M(p, α)− (K + L)

V (p, α)−K0
, 0

}
.

This result is, for example, found in [1] or [4].
Thus, we obtain Proposition 1. �

Sඁංඋൺං, Akira／Maillet Type Theorem for Nonlinear Goursat Problems
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5. Proof of Lemma 1

In order to prove Lemma 1, it is sufficient to estimate the lower and the upper
bound estimates of the power J of 1/(R− x) by induction.

First, the lower bound estimate is given as follows.

J ≥ p+K0|α|+K + L+ 1 +
∑
Δ

αk�∑
r=1

(ik�r +K + L+ 1)

= p+K + L+ 1 +
∑
Δ

αk�∑
r=1

(ik�r +K + L+K0 + 1)

=

(
p+

∑
Δ

αk�∑
r=1

(ik�r +K − k)

)
+K + L+ 1 +

∑
Δ

αk�∑
r=1

(K0 + L+ 1 + k)

= i+K + L+ 1 +
∑
Δ

αk�∑
r=1

(K0 + L+ 1 + k)

≥ i+K + L+ 1.

Next, the upper bound estimate is given as follows.

J ≤ p+K0|α|+K + L+ 1 +
∑
Δ

αk�∑
r=1

(Mik�r − (M − 1)K0 +K + L+ 1)

= M

(
p+

∑
Δ

αk�∑
r=1

(ik�r +K − k)

)
− (M − 1)

(
p+

∑
Δ

αk�∑
r=1

(K0 +K − k)

)

+
∑
Δ

αk�∑
r=1

(k −K) +
∑
Δ

αk�∑
r=1

(K + L+K0 + 1) +K + L+ 1

≤ Mi− (M − 1)V (p, α) + (K0 − 1)|α|+ (K + L+K0 + 1)|α|+K + L+ 1

= Mi− (M − 1)V (p, α) + (K + L+ 2K0)|α|+K + L+ 1

≤ Mi− (M − 1)V (p, α) + (K + L+ 2K0)V (p, α) +K + L+ 1

= Mi− (M −K − L− 2K0 − 1)V (p, α) +K + L+ 1

≤ Mi− (M −K − L− 2K0 − 1)(K0 + 1) +K + L+ 1

= Mi− (M − 1)K0 − {M − (K + L+ 2K0)(K0 + 1)− 1}+K + L+ 1

= Mi− (M − 1)K0 +K + L+ 1.

Thus, we obtain Lemma 1. �

6. Proof of Lemma 2

In the case (i), k ≤ K and � ≤ L hold. Then we have

∂k−K
t ∂�−L

x W (t, x)

= ∂k−K
t ∂�−L

x

∑
i≥K0

Mi−(M−1)K0∑
J=i

WiJ

(R− x)J+K+L+1
ti

=
∑
i≥K0

Mi−(M−1)K0∑
J=i

C1WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k 	 tK−k

(R− x)�−L
W (t, x),

椙山女学園大学教育学部紀要　Vol. 12　2019年
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because

C1 :=
1∏K−k

q=1 (i+ q)
∏L−�

q=1 (J +K + L+ q)
≤ 1.

Hence, we obtain Lemma 2 (i).
In the case (ii), k > K and � ≤ L hold. Then we have

∂k−K
t ∂�−L

x W (t, x)

= ∂k−K
t ∂�−L

x

∑
i≥K0

Mi−(M−1)K0∑
J=i

WiJ

(R− x)J+K+L+1
ti

=
∑
i≥K0

Mi−(M−1)K0∑
J=i

∏k−K
q=1 (i+K − k + q)∏L−�
q=1 (J +K + L+ q)

WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k

	
∑
i≥K0

Mi−(M−1)K0∑
J=i

ik−K

(J +K + L+ 1)L−�

WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k.

Here, we put L1 = (Mt∂t +L1)
k+�−K−L. Since i

J+K+L+1 ≤ i
i+K+L+1 ≤ 1 ≤ i, the

majorant relation

ik−K

(J +K + L+ 1)L−�
	

{
1 (if k + � ≤ K + L),
(t∂t)

k+�−K−L (if k + � > K + L)

	
{

1 (if k + � ≤ K + L),
L1 (if k + � > K + L)

= L2

holds in the sense of operator for ti. This is Lemma 2 (ii).
In the case (iii), k ≤ K and � > L hold. Then we have

∂k−K
t ∂�−L

x W (t, x)

= ∂k−K
t ∂�−L

x

∑
i≥K0

Mi−(M−1)K0∑
J=i

WiJ

(R− x)J+K+L+1
ti

=
∑
i≥K0

Mi−(M−1)K0∑
J=i

∏�−L
q=1 (J + L+ q)∏K−k

q=1 (i+ q)

WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k

	
∑
i≥K0

Mi−(M−1)K0∑
J=i

(J + �)�−L

(i+ 1)K−k

WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k.

Here, by inequalities

J + �

i+ 1
≤ Mi− (M − 1)K0 + L1

i+ 1
≤M + L1 =: M̃ and J + � ≤Mi+ L1,

the majorant relation

(J + �)�−L

(i+ 1)K−k
	 M̃K−k ×

{
1 (if k + � ≤ K + L),
L1 (if k + � > K + L)

= M̃K−kL2

holds in the sense of operator for ti. This is Lemma 2 (iii).

Sඁංඋൺං, Akira／Maillet Type Theorem for Nonlinear Goursat Problems
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In the case (iv), k > K and � > L hold. Then we have

∂k−K
t ∂�−L

x W (t, x)

= ∂k−K
t ∂�−L

x

∑
i≥K0

Mi−(M−1)K0∑
J=i

WiJ

(R− x)J+K+L+1
ti

=
∑
i≥K0

Mi−(M−1)K0∑
J=i

C2WiJ

(R− x)J+K+L+1+(�−L)
ti+K−k

	
∑
i≥K0

Mi−(M−1)K0∑
J=i

ik−K(J + �)�−LWiJ

(R− x)J+K+L+1+(�−L)
ti+K−k,

because

C2 :=
k−K∏
q=1

(i+K − k + q)
�−L∏
q=1

(J + L+ q) ≤ ik−K(J + �)�−L.

Here, since i ≤Mi ≤Mi+ L1 and J + � ≤Mi+ L1, the majorant relation

ik−K(J + �)�−L 	 (Mt∂t + L1)
k+�−K−L = L1

holds in the sense of operator for ti. This is Lemma 2 (iv). �
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